XI. Antalya Cebir Günleri

Antalya, Türkiye

20–24 Mayıs 2009

It is hard to believe that a decade has already passed since we gathered in a bar-converted-to-classroom at Falcon Hotel, pulled the curtains and started timidly a conference among ourselves. We then jokingly called it the first Antalya Algebra Days. This year we are overwhelmed with exhilaration in welcoming you to the second decade of Antalya Algebra Days.

Our dream then was to act under the disguise of helping graduate students to find an opportunity for international contact. We pretended that we would strive to create for them an environment where they would hear about the most recent developments in algebra and find opportunities for international collaboration. I can now admit that we did it all for ourselves. That so many graduate students also benefited from these efforts as much as we did is just a happy coincidence.

Antalya provides an excellent environment for mathematics; everybody thinks you are on vacation and leaves you alone while you can do mathematics without being interrupted. I am hoping that this year we will once again exploit this opportunity.

All the invited speakers this year agreed to participate through their own funds. My two young colleagues Özgün and Müfit in the organizing committee undertook several boring but somebody-must-do-it chores with good humor. Ergün undertook the annoying task of dealing with bureaucracy to fund young speakers. David, as usual, did a superb job with the web and with this booklet. His patience, good humor and common sense helped me to see solutions at times of doom and gloom.

This year TÜBİTAK is funding young participants. Bilgi University, through the personal efforts of Ali Nesin, is again providing us with stationery. Tivrona Tours, through the smooth professionalism of Tamer Koç and Şükran Demir, continue to provide an excellent service. And the Turkish Mathematical Society once again provided financial support for unforeseen expenses. We gratefully acknowledge all the help and support we are receiving.

So welcome all to Antalya. Let the festivities begin!

Ali Sinan Sertöz
meeting coordinator
Contents

1 Invited talks

1. Alejandro Adem 4
2. Luchezar Avramov 4
3. Robert Boltje 5
4. Alexandre Borovik 5
5. Jon F. Carlson 6
6. İzzet Coşkun 6
7. Mátyás Domokos 6
8. David J. Green 7
9. Rob de Jeu .. 7
10. Martin Kreuzer 8
11. James D. Lewis 8
13. Anthony J. Scholl 9
14. Ichiro Shimada 10
15. Peter Symonds 12
16. Muhammed Uludağ 12
17. Sinan Ünver 13

2 Contributed Talks

1. Mohammad Hasan Abbaspour 14
2. Evrim Akalan 15
3. Fatma Altunbulak Aksu 15
4. Murat Altunbulak 16
5. Akm Osman Atagün 16
6. Sevgi Atihhan 17
7. Laurence Barker 18
8. Cansu Betin 18
9. İsmail Naci Cangül 19
10. Ölcay Çoşkun 20
11. Yasemin Çengelenniş 20
12. Alex Degtyarev 21
13. Ömür Deveci 21
15. Emilie Dufresne 23
16. Kıvanç Ersoy 24
17. Ghodrat Ghaffarzadeh 26
18. Ashi Güçlükan İlhan 27
19. Murat Güzeltepe 28
20. Sevgi Harman 29
21. Mustafa Kalafat 29
22. Semra Öztürk Kaptanoğlu 30
23. Tariel Kemoklidze 30
24. Fatih Koyuncu 32
25. V.M. Levchuk 32
26. Uğur Madran 33
27. Hamidreza Maimani 33
28. Sh. Makharadze 34
29. Pınar Mete 35
30. Figen Öke 35
31. Mehmetcik Pamuk 36
32. Semra Pamuk 36
33. Celal Cem Saroğlu 37
34. Gökhan Soydan 38
35. Mesut Şahin 38
36. İrfan Şiap 39
37. Müge Taşkin 42
38. Abolfazl Tehranian 43
39. Vladimir Tolstyk 44
40. İnan Utku Türkmenn 45
41. Sergey Zyubin 46

3 Posters

1. Acar, Koyuncu & Tanay 47
2. Atağıın, Aygün & Sezgin 48
3. Bokelavadze & Amaglobeli 48
4. Mehmet Akif Erdal 50
5. Deniz Kuthuay 50
6. Cihan Okay 51
7. Ipek Tuvay 51
8. Özgün Ünlüli 52

4 Personnel

5 Acknowledgements

6 Participants

7 Notes on Turkish

8 Session chairs

9 Timetable
1 Invited talks

Commuting matrices and spaces of homomorphisms
Alejandro Adem

Let G denote a Lie group, and consider the space of all commuting n-tuples of elements in G. In this talk we will discuss basic topological properties of spaces such as these, and how they relate to bundle theory, group cohomology and other interesting topological invariants.

University of British Columbia
adem@math.ubc.ca
www.math.ubc.ca/~adem/

Square-zero matrices over commutative rings
Luchezar Avramov

We will discuss $n \times n$ matrices A with $A^2 = 0$ over a commutative ring R containing a field, k. The condition on A guarantees that col(A), the space of A-linear combinations of columns of A, is contained in nul(A), the set of solutions of the system of linear equations $AX = 0$.

The following question is open even when R is a polynomial ring in $d \geq 4$ variables over k: If A is upper triangular and col(A) has finite, non-zero codimension in nul(A), then does one have $n \geq 2^d$? The talk will review the origins of such a strange statement (in studies of torus actions on CW complexes), its extension to noetherian commutative rings (where it ties up with major unsolved problems in the field), the partial results obtained (concerning the block structure of A), and the techniques used to prove them (from an unwritten prequel to homological algebra).

The talk is based on joint work with Ragnar-Olaf Buchweitz, Srikanth Iyengar, and Claudia Miller.

University of Nebraska, Lincoln
avramov@math.unl.edu
www.math.unl.edu/~lavramov2/
Fibred biset functors
Robert Boltje

In joint work with Olcay Coşkun, we introduced the notion of a fibred biset functor, generalizing Bouc’s biset functors. Biset functors are functors on a category whose objects are finite groups and whose morphisms are given by the Grothendieck group of bisets, i.e., finite sets with commuting left and right actions of the respective groups. This set of morphisms can be identified with the Burnside group of the direct product of the two finite groups. Biset functors generalize global Mackey functors by including inflation and deflation maps in a very natural way. A fibred biset functor is defined on a similar category, with the morphism set changed to the Grothendieck group of monomial representations (which contains the Burnside group). A standard example is the character ring functor. In the talk we will introduce the notion of a biset functor, classify the simple biset functors, and give examples.

University of California, Santa Cruz
boltje@math.ucsc.edu
math.ucsc.edu/~boltje/

What is an ultraproduct?
Alexandre Borovik

The ultraproduct is a very useful, powerful, and in the same time somewhat mysterious way of constructing algebraic objects. I will give a very informal introduction into ultraproducts and the Łoś Theorem.

University of Manchester
borovik@manchester.ac.uk
www.maths.manchester.ac.uk/~avb/
Generic kernels and modules of constant Jordan type
Jon F. Carlson

This is joint work with Eric Friedlander, Julia Pevtsova and Anderei Suslin We consider modules over an elementary abelian group on which every element in the radical, but not the square of the radical, has the same Jordan canonical form. Such modules can be used to define bundles on projective spaces and Grassmanians. They have many interesting properties. Every module over the group algebra contains several of these as submodules. They lead us to define certain canonical submodules which are called generic kernels and images. In this talk I will discuss some of the constructions and their generalizations.

University of Georgia, Athens
jfc@math.uga.edu
www.math.uga.edu/~jfc/

What is Schubert calculus?
İzzet Coşkun

I will introduce Schubert calculus in the context of the cohomology ring of Grassmannians. The structure constants of the cohomology of Grassmannians are often called Littlewood-Richardson coefficients and they have many interpretations in representation theory and combinatorics. Time permitting, I will describe Schubert calculus for other homogeneous varieties such as flag varieties and orthogonal Grassmannians.

University of Illinois at Chicago
coskun@math.uic.edu
www.math.uic.edu/~coskun/

On moduli spaces of quivers
Mátyás Domokos

We shall review the concept of moduli spaces of representations of quivers, and discuss some results on singularities of such moduli spaces.

Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
domokos@renyi.hu
Computational group cohomology and commutative algebra

David J. Green

The mod-p cohomology ring of a finite group is a finitely presented graded commutative algebra. Many results and conjectures link commutative algebra invariants of the cohomology ring to the subgroup structure of the group. One way to test existing conjectures and develop new ideas is to calculate as many cohomology rings as possible. Simon King and I have computed the mod-2 cohomology rings of all 2328 groups of order 128. Following Carlson, the cohomology of a p-group can be computed from a sufficiently large initial segment of the minimal resolution. We used the computer algebra system Sage in order to allow high-speed communication between methods for commutative algebra (Singular), group theory (Gap) and homological algebra (C MeatAxe). Noncommutative Groebner bases provide an efficient way to construct the resolution.

Friedrich-Schiller-Universität Jena
david.green@uni-jena.de
users.minet.uni-jena.de/~green/

What is known about K_2 of curves?

Rob de Jeu

As a special case, the Beilinson conjectures predict a relation between the regulator of (a part of) K_2 of a curve over a number field and the value of its L-function at 2. We discuss this conjecture, how one can describe the part of the K-group, various results that corroborate the conjecture, as well as some general results about the kernel of the tame symbol.

Vrije Universiteit, Amsterdam
jeu@few.vu.nl
www.few.vu.nl/~jeu/
What Are Border Bases?
Martin Kreuzer

Border bases are a generalization of Groebner bases and have been introduced for zero-dimensional polynomial ideals. They offer a number of advantages:
(1) numerical stability,
(2) symmetry preservation, and
(3) explicit equations for the moduli space.
After introducing the basic definitions and properties of border basis theory, we focus on some recent advances in the study of their moduli space, the border basis scheme. In particular, we give explicit constructions of its principal component and of various kinds of flat families of ideals which can be used to deform one zero-dimensional ideal to another.

Universitaet Passau
Martin.Kreuzer@uni-passau.de
staff.fim.uni-passau.de/~kreuzer/

The evolution of algebraic cycles:
A 30 year reflection from a transcendental geometer
James D. Lewis

I will explain the intertwining role of Hodge theory and algebraic cycles, beginning from the classical era to the more recent developments using arithmetical normal functions.

University of Alberta, Edmonton, Alberta, Kanada
lewisjd@ualberta.ca
www.math.ualberta.ca/Lewis_JD.html
Left quasi-morphic rings

W. K. Nicholson

This is joint work with V. Camillo and Z. Wang.

An element a in a ring R is called left morphic if the “dual of the isomorphism theorem” holds for the map $r \mapsto ra$, that is if $R/Ra \cong 1(a)$ where $1(x)$ is the left annihilator; this condition holds if and only if there exists $b \in R$ such that $Ra = 1(b)$ and $1(a) = Rb$. The ring R is called a left morphic ring if every element is left morphic.

We relax this condition and say that a ring R is left quasi-morphic if, for each $a \in R$, there exist b and c in R such that $Ra = 1(b)$ and $1(a) = Rc$. Examples include left morphic rings and (von Neumann) regular rings. Our first theorem is an extension of a basic result of von Neumann about regular rings: In a left quasi-morphic ring, the set $\mathcal{L}(R)$ of all principal left ideals forms a lattice, that is finite intersections and finite sums of principal left ideals are again principal. This leads to structure theorems when mild finiteness conditions are imposed. In particular we obtain our second theorem: A ring R is an artinian principal ideal ring (two-sided) if and only if R is a left and right quasi-morphic ring in which the lattice $\mathcal{L}(R)$ has the ACC (equivalently the DCC).

University of Calgary
wknichol@math.ucalgary.ca
math.ucalgary.ca/profiles/w-keith-nicholson

Hypersurfaces and the Weil conjectures

Anthony J. Scholl

This talk is about Weil’s famous conjectures on the number of points of a variety over a finite field. We review the history of the conjectures, and describe some new results related to the case of hypersurfaces.

DPMMS, Centre for Mathematical Sciences, Cambridge, UK
a.j.scholl@dpmms.cam.ac.uk
www.dpmms.cam.ac.uk/~ajs1005/
Zariski pairs and lattice theory

Ichiro Shimada

For simplicity, we restrict ourselves to complex projective plane curves B whose singular locus $\text{Sing} B$ consists of only simple singularities. We introduce three equivalence relations among (reduced, possibly reducible) projective plane curves of a fixed degree.

Definition. Let B and B' be projective plane curves with only simple singularities.

1. We write $B \sim_{\text{eqs}} B'$ if B and B' are contained in the same connected component of an equisingular family of plane curves.

2. We say that B and B' are of the same configuration type and write $B \sim_{\text{cfg}} B'$ if there exist tubular neighborhoods $T \subset \mathbb{P}^2$ of B and $T' \subset \mathbb{P}^2$ of B' and a homeomorphism $\varphi : (T, B) \cong (T', B')$ such that $\deg \varphi(B_i) = \deg B_i$ holds for each irreducible component B_i of B, that φ induces a bijection $\text{Sing} B \cong \text{Sing} B'$, and that φ is an analytic isomorphism of plane curve singularities locally around each $P \in \text{Sing} B$.

3. We say that B and B' have the same embedding topology and write $B \sim_{\text{emb}} B'$ if there exists a homeomorphism $\psi : (\mathbb{P}^2, B) \cong (\mathbb{P}^2, B')$ such that ψ induces a bijection $\text{Sing} B \cong \text{Sing} B'$ and that, locally around each $P \in \text{Sing} B$, ψ is an analytic isomorphism of plane curve singularities.

It is obvious that

$$B \sim_{\text{eqs}} B' \implies B \sim_{\text{emb}} B' \implies B \sim_{\text{cfg}} B'.$$

Definition. A Zariski pair is a pair $[B, B']$ of projective plane curves of the same degree with only simple singularities such that $B \sim_{\text{cfg}} B'$ but $B \not\sim_{\text{emb}} B'$.

Example. Zariski [6] showed that there are irreducible plane curves B and B' of degree 6 with six ordinary cusps such that $\pi_1(\mathbb{P}^2 \setminus B)$ is non-abelian while $\pi_1(\mathbb{P}^2 \setminus B')$ is abelian. The curve B is defined by a homogeneous equation of the form $f^3 + g^2 = 0$, where f and g are polynomials of degree 2 and 3, respectively. An explicit defining equation of B' was given by Oka [1]. See also [2].

It is easy to determine whether or not two plane curves are of the same configuration type; while it is not so simple to determine whether or not they have the same embedding topology. Our aim is to show that a certain sublattice of the Néron-Severi lattice of the smooth minimal surface birational to the double cover of \mathbb{P}^2 branching along the plane curve provides us with a strong tool to distinguish the topological type of the embedding. The details (for curves of degree 6) are given in [4] and in [5].

A lattice is a free \mathbb{Z}-module L of finite rank with a non-degenerate symmetric bilinear form

$$L \times L \to \mathbb{Z}.$$

Let $B \subset \mathbb{P}^2$ be a projective plane curve of even degree such that $\text{Sing} B$ consists of simple singularities of ADE-type R_B. Let $Y_B \to \mathbb{P}^2$ be the double covering of \mathbb{P}^2 branching along B. Then the singular points of Y_B are rational double points of ADE-type R_B. Let $X_B \to Y_B$ be the minimal resolution of these rational double points. We regard $H^2(X_B, \mathbb{Z})$ as a lattice by the cup-product. Let

$$\Sigma_B \subset H^2(X_B, \mathbb{Z})$$
be the sublattice generated by the classes of the exceptional \((-2)\)-curves of the resolution \(X_B \to Y_B\) and the class of the pull-back of a line of \(\mathbb{P}^2\). We then denote by
\[
\Lambda_B \subset H^2(X_B, \mathbb{Z})
\]
the primitive closure of \(\Sigma_B\), and by
\[
T_B \subset H^2(X_B, \mathbb{Z})
\]
the orthogonal complement of \(\Lambda_B\).

Theorem. The isomorphism class of the lattice \(T_B\) is an invariant of the homeomorphism type of \((\mathbb{P}^2, B)\).

Corollary. Suppose that \(B \sim_{cl} B'\) and \(|\Lambda_B/\Sigma_B| \neq |\Lambda_{B'}/\Sigma_{B'}|\). Then \([B, B']\) is a Zariski pair.

We investigate the finite abelian groups \(\Lambda_B/\Sigma_B\) in relation with the geometry of the embedding \(B \hookrightarrow \mathbb{P}^2\) (for example, existence of plane curves of low degrees passing through singular points of \(B\)).

As another application of the theorem, we construct examples of arithmetic Zariski pairs:

Definition. An arithmetic Zariski pair is a Zariski pair \([B, B^\sigma]\), where \(B\) is defined over \(\overline{\mathbb{Q}}\) and \(B^\sigma\) is the conjugate of \(B\) by an element \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\).

For the construction of examples of arithmetic Zariski pairs in degree 6, we need the arithmetic theory of transcendental lattices of singular \(K3\) surfaces developed in [3].

References

Hiroshima University

shimada@math.sci.hiroshima-u.ac.jp

www.math.sci.hiroshima-u.ac.jp/~shimada/index.html
On the Castelnuovo-Mumford regularity of cohomology and invariant rings

Peter Symonds

We discuss the properties of the Castelnuovo-Mumford regularity of a graded module and how it can be used to give bounds on the degrees of the generators and relations. We then mention some of the ideas in the proofs of two results.

1. The regularity of a ring of polynomial invariants under the action of a finite group is at most 0, even in finite characteristic. Hence the ring is generated in degrees at most $n(|G| - 1)$ (where n is the number of variables and G is the group).

2. The regularity of the cohomology of a finite group is exactly 0.

University of Manchester

Peter.Symonds@manchester.ac.uk

www.maths.manchester.ac.uk/~pas/

The universal arithmetic curve

Muhammed Uludağ

I will discuss the limit space F of the category of coverings C of the “modular interval” as a deformation retract of the universal arithmetic curve, which is by (my) definition nothing but the punctured solenoid S of Penner. The space F has the advantage of being compact, unlike S. A subcategory of C can be interpreted as ribbon graphs, supplied with an extra structure that provides the appropriate morphisms for the category C. After a brief discussion of the mapping class groupoid of F, and the action of the Absolute Galois Group on F, I will turn into a certain “hypergeometric” galois-invariant subsystem (not a subcategory) of genus-0 coverings in C. One may define, albeit via an artificial construction, the “hypergeometric solenoid” as the limit of the natural completion of this subsystem to a subcategory. Each covering in the hypergeometric system corresponds to a non-negatively curved triangulation of a punctured sphere with flat (euclidean) triangles. The hypergeometric system is related to plane crystallography. Along the way, I will also discuss some other natural solenoids, defined as limits of certain galois-invariant genus-0 subcategories of non-galois coverings in C.

Galatasaray University

muhammed.uludag@gmail.com

math.gsu.edu.tr/uludag/
Mixed Tate motives over dual numbers

Sinan Ünver

We will give surveys of two different constructions of the category of mixed Tate motives: one due to Nori and the other one due to Beilinson, Goncharov, Schechtman, and Varchenko. We will relate this to Hilbert’s 3rd problem and the Bloch-Suslin complex over the dual numbers. Finally we will construct the additive dilogarithm on the Bloch-Suslin complex and explain how it relates to the volume map on the Euclidean scissors congruence groups.

Koç University

sunver@ku.edu.tr
2 Contributed Talks

Quasi-permutation representations of p-groups enjoy Hasse principle
Mohammad Hasan Abbaspour

By a quasi-permutation matrix we mean a square matrix over the complex field \mathbb{C} with non-negative integral trace. Thus every permutation matrix over \mathbb{C} is a quasi-permutation matrix. For a given finite group G, let $p(G)$ denote the minimal degree of a faithful permutation representation of G (or a faithful representation of G by permutation matrices), let $q(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field \mathbb{Q}, and let $c(G)$ denote the minimal degree of a faithful representation of G by complex quasi-permutation matrices. It is easy to see that

$$c(G) \leq d(G) \leq p(G)$$

where G is a finite group. A finite group G is said to enjoy Hasse principle if every conjugacy preserving automorphism of G is an inner automorphism. In [2], for any prime p, all finite non-abelian p-groups of order p^m having cyclic subgroups of order p^{m-2} but having no normal cyclic subgroup of order p^{m-2} and no element of order p^{m-1} are classified and shown that all enjoy Hasse principle. In this paper, we study characters and quasi-permutation representations of these groups.

References

Department of Mathematics, University of Urmia, Urmia, Iran

m.abbaspour@urmia.ac.ir
Divisor class groups of certain non-commutative rings

Evrim Akalan

In commutative algebra and number theory the class group of a Krull Domain plays an important role. Roughly speaking, it measures the lack of unique factorisation in the ring. In the non-commutative case there are different possibilities to define the divisor class group. We investigate Noetherian maximal orders with enough invertible ideals and their two different divisor class groups. We also investigate relations between the class groups of the ring and the divisor class group of the center of the ring. We provide examples to illustrate our results.

Hacettepe University
eakalan@hacettepe.edu.tr

Essential cohomology of elementary abelian p-groups

Fatma Altunbulak Aksu

The talk will be a presentation of a joint work with David J. Green [1]. Let G be a finite group, k be a field of characteristic p and let $H^*(G, k)$ denote the cohomology ring of G. The essential cohomology of G, denoted by Ess(G), is the ideal in $H^*(G, k)$ consisting of the cohomology classes which restrict trivially on all proper subgroups of G. In this work, we study the essential cohomology of an elementary abelian p-group in the case of odd primes.

Let V be an elementary abelian p-group of rank n. It is well-known that for an odd prime p, the cohomology ring of V is polynomial tensor exterior, i.e. $H^*(V, k) = k[x_1, ..., x_n] \otimes_k \wedge(a_1, ..., a_n)$. We show that Ess($V$) is the Steenrod closure of the class $a_1 \cdots a_n$. That is Ess(V) is the smallest ideal which contains the class $a_1 \cdots a_n$ and is closed under the action of Steenrod algebra.

Our second result concerns the structure of Ess(V) as a module over the polynomial subalgebra $k[x_1, ..., x_n]$. An elementary abelian p-group is also a vector space over \mathbb{F}_p and there is a natural action of GL(V) on the cohomology ring $H^*(V, k)$. We prove that the essential ideal Ess(V) is free on the set of M"{u}i. invariants which are the SL(V)−invariants of the natural action of GL(V) on the cohomology ring $H^*(V, k)$.

References

Bilkent University
fatma@fen.bilkent.edu.tr
www.fen.bilkent.edu.tr/~fatma/
The hive model and Littlewood-Richardson coefficients

Murat Altunbulak

In this talk I will describe the so called hive model given by Knutson and Tao [1] (see also [2]), and its connection with the Littlewood-Richardson coefficients which describe the irreducible components V_ν of the tensor product $V_\lambda \otimes V_\mu$ of irreducible representations V_λ and V_μ of $GL_n(\mathbb{C})$.

References

Atılım University
murat.altunbulak@gmail.com
www.atilim.edu.tr/~maltunbulak/

IFP ideals in near-rings

Akın Osman Atagün

A near-ring N is called an IFP near-ring provided that for all $a, b, n \in N$, $ab = 0$ implies $anb = 0$. In this study, the IFP condition in a near-ring is extended to the ideals in near-rings. If N/P is an IFP near-ring, where P is an ideal of a near-ring N, then we call P as the IFP-ideal of N. The relations between prime ideals and IFP-ideals are investigated. It is proved that a right permutable or left permutable equiprime near-ring has no non-zero nilpotent elements and then it is obtained that if N is a right permutable or left permutable finite near-ring, then N is a near-field if and only if N is an equiprime near-ring. Also, it is attracted attention that the concept IFP-ideal is seen naturally in some near-rings like that p-near-rings, Boolean near-rings, weakly (right and left) permutable near-rings, left (right) self distributive near-rings, left (right) strongly regular near-rings and left (w-) weakly regular near-rings.

References

A note on the factorisation of (m, r)-potent elements in T_n

Sevgi Atlıhan

The index and period of an element a of a finite semigroup are the smallest values of $m \geq 1$ and $r \geq 1$ such that $a^{m+r} = a^m$. An element with index m and period 1 is called an m-potent element. In [1], for an element α of a finite full transformation semigroup with index m and period r, the authors obtained an unique factorisation $\alpha = \sigma \beta$ such that $\text{Shift}(\sigma) \cap \text{Shift}(\beta) = \emptyset$, where σ is a permutation of order r and β is an m-potent element. The main aim of this article is to research in the case $n = m + r$, whether the condition $\text{Shift}(\sigma) \cap \text{Shift}(\beta) = \emptyset$ can be removed or not. In this paper, to remove the condition first, the case $n = m + r$ is characterized. Next, it is given the main theorems.

References

Gazi University
asevgi@gazi.edu.tr
Dead virtual permutation sets and the Tornehave morphism

Laurence Barker

The idea behind the theory of group functors is to study certain familiar structures, such as character rings and Burnside rings, by realizing those structures as modules of algebras generated by suitable maps, for instance, induction and inflation maps. In this context, a symplectic map introduced long ago by J. Tornehave can be realized as a ring homomorphism and, moreover, it induces a recently discovered isomorphism of S. Bouc concerning real characters modulo rational characters.

(References: Tornehave morphisms I, II, III, submitted for publication, available on homepage.)

Bilkent University
barker@fen.bilkent.edu.tr
www.fen.bilkent.edu.tr/~barker/fenis2.html

On totally inert groups

Cansu Betin

A subgroup H of a group G is called inert, if the index $|H : H \cap H^g|$ is finite for any element g in G. A group all of whose proper subgroups are inert is called totally inert. The class of totally inert groups is quite large and complex. It contains Dedekind groups, quasi-finite groups (in particular Tarski monsters), and the class of FC-groups properly. Recently, this topic is studied by several authors [1, 2, 4]. Belyaev-Kuzucuoğlu-Seçkin have shown that no infinite locally finite simple group is totally inert [2]. Robinson investigated the structure of soluble totally inert groups [4].

In this work [3], we study simple totally inert groups and the structure of minimal-non-FC totally inert groups.

References

Atılım University
cbetin@atilim.edu.tr
www.atilim.edu.tr/~cbetin/
The solutions of the exponential diophantine equation

\[x^2 + 2^a \cdot 3^b \cdot 11^c = y^n \]

İsmail Naci Cangül

This is joint work with Gökhan Soydan and Musa Demirci. We give all non-negative integer solutions \(a, b, c, x, y \geq 1 \), \(n \geq 3 \) with \(x \) and \(y \) coprime, of the exponential Diophantine equation \(x^2 + 2^a \cdot 3^b \cdot 11^c = y^n \). For \(n = 3, 4, 6, 12, 24 \), we transform the above equation into several elliptic equations written in cubic or quartic models for which we determine all of their \(\{2, 3, 11\} \)-integer points. For \(n \geq 5 \), we apply a method that uses primitive divisors of Lucas sequences. Again we are able to obtain several elliptic equations written in cubic models for which we find all their \(\{2, 3, 11\} \)-integer points. All the Computations are done with MAGMA [7].

References

Uludağ University, 16059 Bursa, TURKEY
cangul@uludag.edu.tr
The ring of subquotients of a finite group
Olcay Coşkun

In this talk we introduce the ring $\Lambda(G)$ of subquotients of a finite group G. As an abelian group, it is free on the set of conjugacy classes of subquotients (i.e. sections) of the group G. Alternatively it is the Grothendieck group of the category of pure bisets and in this case the ring structure comes from a new composition product of bisets. The ring of subquotients is connected to the representation ring of the Mackey algebra for G by a linearization map which has similar properties as the well-known linearization map from the Burnside ring of G to the representation ring of G.

Boğaziçi Üniversitesi
olcay.coskun@boun.edu.tr

Constacyclic and cyclic codes over $F_{2^k} + uF_{2^k} + u^2F_{2^k}$
Yasemin Çengellenmiş

It is extended the result of [4] to codes over the commutative ring $F_{2^k} + uF_{2^k} + u^2F_{2^k}$ where $k \in \mathbb{N}$ and $u^3 = 0$. In [2], a new Gray map between codes over $F_{2^k} + uF_{2^k} + u^2F_{2^k}$ and F_{2^k} was defined. It was proved that the Gray image of the linear $(1 - u^2)$-cyclic code over the commutative ring $F_{2^k} + uF_{2^k} + u^2F_{2^k}$ of length n is a distance-invariant quasicyclic code of index 2^{2k-1} and the length $2^{2k}n$ over F_{2^k}. In here, it is proved that if $(n, 2) = 1$, then every code of length $2^{2k}n$ over F_{2^k} which is the Gray image of a linear cyclic codes of length n over $F_{2^k} + uF_{2^k} + u^2F_{2^k}$ is permutation equivalent to a quasi-cyclic code of index 2^{2k-1}.

References

Department of Mathematics, Faculty of Science and Arts, Trakya University, 22030 Edirne, Turkey
ycengellenmis@yahoo.com
On the number of solutions of quadratic equations

Alex Degtyarev

This is a joint work with I. Itenberg and V. Kharlamov.

We discuss the classical problem on the number of connected components of an intersection of real quadric in a real projective space. In spite of the fact that all equations are quadratic, we show (by considering a few simple boundary cases) that the problem is much more difficult than it seems and that the ‘obvious’ bounds that one may conjecture fail.

Our principal results concern an ‘advanced’ boundary case, namely, intersections of three real quadrics. Let $B^0_2(N)$ be the maximal number of connected components that a regular complete intersection of three real quadrics in \mathbb{P}^N can have. We prove that $B^0_2(N)$ differs at most by one from the maximal number Hilb(d) of ovals of the submaximal depth $\left[(N - 1)/2\right]$ of a real plane projective curve of degree $d = N + 1$. As a consequence, we obtain the bounds

$$\frac{1}{4}N^2 + O(N) < B^0_2(N) < \frac{3}{8}N^2 + O(N).$$

In particular, our result implies that there is no uniform bound on the number of connected components of an intersection of real quadrics depending only on the codimension of the intersection.

Bilkent University
degt@fen.bilkent.edu.tr
www.fen.bilkent.edu.tr/~degt

Comments on the Fibonacci sequences in finite groups

Ömür Deveci

In the work of Steven W. Knox, the claim is made that “A k-nacci sequence in a finite group is simply periodic [1].” We provide an example to demonstrate that the claim is false. This is joint work with Erdal Karaduman, also of Atatürk University.

References

Atatürk University, Department of Mathematics, Faculty of Sciences, 25240 Erzurum, Turkey
odeveci36@hotmail.com
On one general method of describing all idempotents of the semigroup \(B_X(D) \) and defining their number

Ya. Diasamidze

Let \(X \) be an arbitrary set, \(D \) be an arbitrary \(X \)-semilattice of unions, and \(X \) be a complete semigroup of binary relations which is defined by the complete \(X \)-semilattice of unions \(D \) (see [1]).

It is obvious that any idempotent of the semigroup \(B_X(D) \) is a right unit of some subsemigroup of this semigroup. Hence it follows that the union of the set of all right units of all those subsemigroups of the semigroup \(B_X(D) \) which possess right units coincides with the set of all idempotent elements of the semigroup \(B_X(D) \).

Let us describe the method of investigation of idempotent elements of the semigroup \(B_X(D) \). The method consists of the following stages of investigation of the semilattice \(D \) and the semigroup \(B_X(D) \).

a) the description of the set of all semilattices of the semilattice \(D \);

b) the choice of all \(XI \)-semilattices, i.e., all semilattices \(D' \) for which the semigroup \(B_X(D') \) possesses a right unit, from the set of all subsemilattices of the semilattice \(D \) of the set \(\Sigma_D \).

Note that in [2] the method was worked out, which enables one to determine whether the finite \(X \)-semilattice of unions is or is not a \(XI \)-semilattice.

c) The partitioning of the set \(\Sigma_D \) into classes, in everyone of which only isomorphic semilattices of the set \(\Sigma_D \) are connected with one another. The set of representatives of these classes is denoted by \(\Sigma_{XI} \).

d) the description of all right units of the semigroup \(B_X(D') \) for any semilattice \(D' \in \Sigma_{XI} \).

Note that there exists the method of describing right units of the semigroup \(B_X(D') \). Also, for a finite set \(X \) the method has been worked out, which makes it possible to derive formulas for calculating the number of all right units of the semigroup \(B_X(D') \) (see [3]).

e) The description of all idempotents of the semigroup \(B_X(D) \).

For this, assuming that \(\emptyset \notin D \), it is sufficient to combine in a single theorem all conditions of describing the right units of those semigroups \(B_X(D') \) for which \(D' \in \Sigma_{XI} \), while, assuming that \(\emptyset \in D \), it is necessary to combine in one theorem all conditions of describing the right units of those semigroups \(B_X(D') \) for which \(D' \in \Sigma_{XI} \) and \(\emptyset \in D' \).

f) The derivation of formulas for calculating the number of idempotent elements of the semigroup \(B_X(D) \) when \(X \) is a finite set.

For this, assuming that \(\emptyset \notin D \), for any \(D' \in \Sigma_D \) it is sufficient to sum the numbers of right units of semigroups \(B_X(D') \), while, assuming that \(\emptyset \in D \), it is necessary to sum the numbers of right units only of those semigroups \(B_X(D') \) for which \(\emptyset \in D' \) (see [3]).

References

Separating invariants and finite reflection groups

Emilie Dufresne

The study of separating invariants has become quite popular in the recent years. In the case of finite groups, a separating algebra is a subalgebra which separates the orbits. In this talk, we prove that there can exists polynomial separating algebras only when the group is generated by reflections. We thus generalize the classical result of Serre that only reflection groups may have a polynomial ring of invariants.

References

MATCH, Universität Heidelberg
emilie.dufresne@iwr.uni-heidelberg.de
Centralizers of finite subgroups in non-linear simple locally finite groups
Kıvanç Ersoy

Hartley and Kuzucuoğlu proved in [2, Theorem A2] that in an infinite simple locally finite group, the centralizer of every element is infinite. Hartley asked the following question in [1]:

Question 1. Let G be a non-linear simple locally finite group and F be a finite subgroup of G. Is $C_G(F)$ necessarily infinite?

We try to answer a stronger version of Hartley’s question:

Question 2. Determine all non-linear simple locally finite groups G and finite subgroups $F \leq G$ such that the centralizer of F in G has an abelian subgroup isomorphic to a direct product of cyclic groups of order p_i for infinitely many prime p_i.

The non-linear simple locally finite groups are studied by using Kegel covers, whose factors are finite simple groups:

Definition. Let G be a locally finite group. A set $\{(G_i, N_i) : i \in I\}$ consisting of pairs of subgroups of G is called a Kegel cover of G if $G = \bigcup_{i \in I} G_i$, the factors G_i/N_i are finite simple groups and $G_i \cap N_{i+1} = 1$.

Here, since G_i/N_i’s are finite simple groups, by the Classification of Finite Simple Groups, we know that each factor is either an alternating group, or a simple group of Lie type, or a sporadic group. Since there are only finitely many sporadic groups, for any locally finite group G there exist a Kegel cover whose factors are either alternating groups or simple groups of Lie type.

Indeed, for a simple locally finite group G, there are only 4 possible cases:

1. G has a Kegel cover with all G_i/N_i’s are alternating groups, or,
2. G has a Kegel cover with all G_i/N_i’s are a fixed type classical group with unbounded rank parameters, or,
3. G has a Kegel cover with all G_i/N_i’s are a fixed type classical group with bounded rank parameters, or,
4. G has a Kegel cover with all G_i/N_i’s are a fixed type exceptional groups.

In cases (3) and (4), the group is linear. So, if we have a non-linear simple locally finite group, then the Kegel cover is either alternating type or a fixed classical type with unbounded rank parameters.

Definition. A Kegel cover $K = \{(G_i, N_i) : i \in I\}$ is called a split Kegel cover if $C_{G_i/N_i}(K/N_i) = C_{G_i}(K)N_i/N_i$ for every subgroup K of G_i.

We need a general notion of a semisimple element in a simple locally finite group:
Definition. Let G be a non-linear simple locally finite group and

$$\mathcal{K} = \{(G_i, N_i) : i \in I\}$$

be a Kegel cover for G. An element x in G is called K-semisimple if K is a Kegel cover of alternating type or G_i/N_i is a finite simple group of Lie type and xN_i is a semisimple element of G_i/N_i for every $i \in I$.

We obtained the following result:

Theorem. Let G be a non-linear simple locally finite group with a split Kegel cover K and F be any finite subgroup of G consisting of K-semisimple elements. The centralizer $C_G(F)$ contains an infinite abelian subgroup isomorphic to a direct product of cyclic groups of order p_i for infinitely many prime p_i.

References

Middle East Technical University

kersoy@metu.edu.tr
Quasi-permutation representations of nilpotent groups

Ghodrat Ghaffarzadeh

By a quasi-permutation matrix we mean a square matrix over the complex field \(\mathbb{C} \) with non-negative integral trace. Thus every permutation matrix over \(\mathbb{C} \) is a quasi-permutation matrix. For a given finite group \(G \), let \(p(G) \) denote the minimal degree of a faithful permutation representation of \(G \) (or a faithful representation of \(G \) by permutation matrices), let \(q(G) \) denote the minimal degree of a faithful representation of \(G \) by quasi-permutation matrices over the rational field \(\mathbb{Q} \), and let \(c(G) \) denote the minimal degree of a faithful representation of \(G \) by complex quasi-permutation matrices. It is easy to see that \(c(G) \leq q(G) \leq p(G) \) where \(G \) is a finite group. Following a problem from Brian Hartley (see [4]), we would like to calculate \(c(G) \), \(q(G) \) and \(p(G) \) for nilpotent groups.

Let \(G \) be a finite nilpotent group. Then \(G = P_1 \times \cdots \times P_r \), where \(P_i \)'s are Sylow subgroups of \(G \). Here we will show that

\[
p(G) = p(P_1) + \cdots + p(P_r),
\]

and if \(|G|\) is odd, then

\[
c(G) = c(P_1) + \cdots + c(P_r) \quad \text{and} \quad q(G) = q(P_1) + \cdots + q(P_r).
\]

In general two last equations are not hold for nilpotent groups of even order. For example in [1], it is shown that if \(G = C_2 \times C_3 \), then \(c(G) = q(G) = 4 \). Also in [3] it is shown that, when \(G \) is a generalized quaternion group, then

\[
2c(G) = q(G) = p(G).
\]

So one can easily see that \(c(Q_8 \times C_2 \times C_3) = 8 \) and \(q(Q_8 \times C_2 \times C_3) = 12 \). For this reason we restrict ourselves to groups of odd order.

References

Department of Mathematics
University of Urmia, Urmia, Iran
gh.ghafarzadeh@urmia.ac.ir
The Euler class of a subset complex
Aslı Güçlükan İlhan

This is a joint work with E. Yalçın. Let G be a finite group. The subset complex $Δ(G)$ is defined as the simplicial complex whose simplices are nonempty subsets of G. The oriented chain complex of $Δ(G)$ gives a $\mathbb{Z}G$-module extension of \mathbb{Z} by $\hat{\mathbb{Z}}$ where $\hat{\mathbb{Z}}$ is a copy of integers on which G acts via the sign representation of the regular representation. The extension class $ζ_G \in \text{Ext}_{\mathbb{Z}G}^{[G]-1}(\mathbb{Z}, \hat{\mathbb{Z}})$ of this extension is called the Ext class of the subset complex of G. This class was first introduced by Reiner and Webb [2] who also raised the following question: What are the finite groups for which $ζ_G$ is nonzero?

In [1], we answer this question completely. We show that $ζ_G$ is nonzero if and only if G is an elementary abelian p-group or G is isomorphic to $\mathbb{Z}/9$, $\mathbb{Z}/4 \times \mathbb{Z}/4$, or $(\mathbb{Z}/2)^n \times \mathbb{Z}/4$ for some integer $n \geq 0$. We obtain this result by first showing that $ζ_G$ is zero when G is a nonabelian group, then by calculating $ζ_G$ for specific abelian groups. The key ingredient in the proof is an observation by Mandell which says that the Ext class of the subset complex is the Euler class of the augmentation module of the regular representation.

We also give some applications of our results to group cohomology, and to the existence of Borsuk-Ulam type theorems.

References

Bilkent University
guclukan@fen.bilkent.edu.tr
www.fen.bilkent.edu.tr/~guclukan
Stabilizer quantum codes via codes over Σ_{2m}

Murat Güzeltepe

This is joint work with Mehmet Özen (ozen@sakarya.edu.tr, www.mehmetozenen.com).

We obtain stabilizer quantum code by using additive codes over the group $\Sigma_{2m} = \mathbb{Z}_{2m} + \alpha \mathbb{Z}_{2m} + \beta \mathbb{Z}_{2m} + \gamma \mathbb{Z}_{2m}$, where $\alpha = 1 + i$, $\beta = 1 + j$, $\gamma = 1 + k$. The multiplicative structure of the Pauli group G_1 on 1 qubit becomes the additive structure of Σ_2 for $m = 1$. Using this argument, a relationship is obtained between the generator matrix of an additive code over the group Σ_2 and the stabilizer generators of the quantum code. The relationship is given in the following table, giving the elements of the group Σ_2 which correspond to the elements of the Pauli group G_1.

1	$-I$	$1 + k$	Y	$1 + j + k$	iX
i	$-X$	$i + j$	$-iY$	$i + j + k$	iI
j	$-Z$	$i + k$	$-iZ$	$1 + i + j + k$	$-iI$
k	$-Y$	$j + k$	$-iX$	$1 + i + j + k$	$-iI$
$1 + i$	X	$1 + i + j$	iY	$1 + i + j + k$	$-iI$

This research is supported by Sakarya University Research funds as a Research Project with Project number 2009-50-02-001.

References

Sakarya University Arts and Science Faculty Department of Mathematics 54187 Esentepe Campus Serdivan/SAKARYA
mguzeltepe@sakarya.du.tr
web.sakarya.edu.tr/~mguzeltepe/
Rings with radically perfect prime ideals

Sevgi Harman

We say an ideal I of a ring R is radically perfect if among the ideals of R whose radical is equal to the radical of I, the one with the least number of generators has this number of generators equal to the height of I. It is shown that over a valuation domain R of finite Krull dimension, each prime ideal of $R[X]$ is radically perfect if and only if R is of dimension one and the maximal ideal of R is the radical of a principal ideal. We also show that if R is a finite dimensional valuation domain with maximal ideal M, then $MR[X]$ is radically perfect implies that $SpecR[X]$ is coprimely packed. Finally, we prove that over any local domain R of finite Krull dimension, the polynomial ring $R[X]$ has the property that each maximal ideal of maximal height is the j-radical of a single element; and that if R is a finite dimensional integral domain with coprimely packed set of maximal ideals then each maximal ideal of $R[X]$ of maximal height is the j-radical of an ideal generated by at most two elements.

References

Istanbul Technical University
harman@itu.edu.tr

Hyperkähler manifolds with holomorphic circle actions

Mustafa Kalafat

We show that a complete simply-connected hyperkahlerian 4 manifold with an isometric triholomorphic circle action is obtained form the Gibbons-Hawking ansatz with some suitable harmonic function. This is joint work with Justin Sawon.

University of Wisconsin, Madison
kalafat@math.wisc.edu
www.math.wisc.edu/~kalafat/
p-power points and modules of constant p-power Jordan type
Semra Öztürk Kaptanoğlu

Let $k[G]$ be the group algebra of a finite abelian p-group G over an algebraically closed field of characteristic p. We define p-power points and give a characterization of them. Using p-power points we define modules of constant p-power Jordan type as a generalization of modules of constant Jordan type. Endotrivial $k[G]$-modules are examples of constant p-power Jordan type modules. We give examples of non-isomorphic modules of constant p-power Jordan type having the same constant Jordan type.

Main reference for this work is [1].

References

Middle East Technical University
sozkap@metu.edu.tr
arf.math.metu.edu.tr/~semra/

The lattice of fully invariant submodules of cotorsion p-adic module
Tariel Kemoklidze

The report deals with questions of abelian group theory and the term group always means an additively written abelian group. The notation and terms used in the report are taken from the monographs [1], [2].

p denotes a fixed prime number. Z and Q are respectively the groups of integer and rational numbers. A subgroup B of the group A is called fully invariant if every endomorphism of A maps B into B. Such are, for example, subgroups $nA = \{na|a \in A\}, A[n] = \{a|na = 0, a \in A\}, n > 0, n \in Z$, the torsion part of the group A.

The investigation of the lattice of fully invariant subgroups of a group is an important task of the theory of abelian groups. The problem was studied by R.Baer, I.Kaplansky,A.Mader, A.Moskalenko, S.Grinshpon, and others in different classes of abelian group. Little is known the lattice of fully invariant subgroups of cotorsion group. A group A is called cotorsion if any extension by a torsion free group C splits i.e. $\text{Ext}(C, A) = 0$. Denote that (see [1,§§54,55]) for every A and B groups $\text{Ext}(A, B)$ is cotorsion and every reduced cotorsion group G is isomorphically embeddable into the group $G^* = \text{Ext}(Q/Z, G)$ called the cotorsion hull of the group G. If T torsion part of group G and T is represented as a direct sum of p-components $T = \bigoplus T_p$, then G will be represented as a direct product $G \cong \Pi T_p^* \bigoplus C_p$ thus the study of cotorsion groups is reduced to a considerable extent to the study of group

$$A = T^* \bigoplus C$$

(*)
where $T^* = \text{Ext}(Z(p^\infty), T)$, is a cotorsion hull of p-group T, and C is an Algebraically compact torsion free group. T^*, C and also A groups, are p-adic modules too.

By the p- indicator of the element a of group A is called an increasing sequence of ordinal numbers $H(a) = (h(a), h(pa), \ldots, h(p^n a), \ldots)$ where h denotes the generalized p-height of the element, i.e. $h(a) = \sigma$ if $a \in p^\sigma A \setminus p^{\sigma+1} A$ and $h(0) = \infty$. In the set of a indicators the order is determined this way $H(a) \leq H(b) \iff h(p^i a) \leq h(p^i b), i = 0, 1, \ldots$

A reduced p-group is called fully transitive if for arbitrary elements a and b, when $H(a) \leq H(b)$, there exists an endomorphism φ of the group such that $\varphi a = b$. In fully transitive groups the lattice of fully invariant subgroups is usually studied with the aid of indicators. When T is torsion complete group or a direct sum of cyclic p-group, then corresponding A.Mader [4] and A.Moskalenko [5] showed that cotorsion hull T^* is fully transitive and with the help of indicators they described the lattice of fully invariant subgroups of T^*. A.Mader indicated the generalized five conditions. In the case of fullfilment a description the lattice of fully invariant submodules will be given.

The direct sum of torsion - complete group is a natural generalization of direct sums of cyclic p-groups and torsion-complete groups. As the author has shown in [3] in this class of groups the torsion hull is not fully transitive if the sum is infinite. Thus the only use of indicators for description of fully invariant subgroups of T^* is not enough.

In this report the elements of group T^*, when $T = \bigoplus_{i=1}^{\infty} B_i$ is countable direct sum of torsion complete groups, is written as a sequence $a = (a_0, a_1 + T, a_2 + T, \ldots)$, with $(b_j)_{j \geq 0}$ is denoted the sequence of elements of basic subgroup $B = \bigoplus_{i=1}^{\infty} B_i$ (see [5]). As we denote $\pi_i(b_j) = b_{ij}, i = 1, 2, \ldots$ projections on i direct summand, we build the set Ω of matrices which are consisted by the indicators. According this we’ll build Ω^* semilattice with the required properties. When in $(*)$ group T is a countable direct sum of torsion complete p-groups and C is an Algebraically compact torsion - free group, then the following theorem is true

Theorem. The lattice of fully invariant submodules of reduced cotorsion p-adic modul A is isomorphic to the lattice of filters of a semilattice Ω^*

References

Department of Mathematics, A. Tsereteli State University, 59, Tamar Mepe St., Kutaisi 4600, Georgia

kemoklidze@gmail.com
Integrally indecomposable polytopes in \(\mathbb{R}^n \)

Fatih Koyuncu

Being given by G. C. Shephard and P. McMullen, there are some criteria for the homothetic indecomposability, in the sense of Minkowski sum, of polytopes with respect to strong chain of homothetically indecomposable faces. Here, we modified and strengthened these criteria by considering complete chain of integrally indecomposable faces instead of strong chain of homothetically indecomposable faces. Consequently, we obtained new infinite families of integrally indecomposable polytopes in \(\mathbb{R}^n \).

References

Muğla University, Department of Mathematics
fatih@mu.edu.tr

Isomorphisms and elementary equivalence of locally nilpotent matrix groups and rings

V.M. Levchuk

The model-theoretic study of linear groups and rings initiated by A.I. Mal’cev is closely related to isomorphism theory. For different triangular matrix rings and associated Lie and Jordan rings and also adjoint groups we consider isomorphisms and the elementary equivalence, see also [1], [2]. Further we consider local automorphisms and derivations.

The work is supported by the Russian Foundation for Basic Research (grant 09-01-00717).

References

Siberian Federal University, Krasnoyarsk, Russia
Understanding polynomial invariants of nonabelian p-groups

Uğur Madran

Let G be a finite group with a faithful representation $\rho : G \to \text{GL}(V)$ over a finite field F. This action induces a linear action on the polynomial ring $F[V]$ which may be regarded as the symmetric algebra of the dual vector space, $S(V^*)$. Describing $F[V]^G$ is of fundamental importance and when $|G| / \text{char } F$ extra difficulties appear, in general. The well-known Noether number, the maximum degree of a polynomial in a minimal generating set, can be arbitrarily large compared to the group order in this specific case, where $\text{char } F$ divides $|G|$.

As, $\text{UT}(n, F)$ -the group of upper triangular unipotent matrices, is a Sylow p-subgroup of $\text{GL}(n, F)$ and the invariant ring $F[V]^\text{UT}(n,F)$ form a polynomial ring, it is reasonable to consider invariants of p-groups. Cyclic groups of order prime power p^α and their invariants are studied in the literature, but only a little is known for the general case.

In this talk, we will describe a generic method to compute invariants of nonabelian p-groups by considering a non-trivial and faithful 4 dimensional representations of a p-group of order p^3 where $p \geq 5$ is a prime.

Izmir University of Economics
ugur.madran@ieu.edu.tr
homes.ieu.edu.tr/~umadran

Rings which are generated by their units: a graph theoretical approach

Hamidreza Maimani

The ring $\mathbb{Z}_2 \times \mathbb{Z}_2$, having only one unit, cannot be generated by its units. It turns out, in the general theory of rings, that this is essentially the only example. In this talk, we give an elementary proof of “A finite commutative ring with nonzero identity is generated by its units if and only if it cannot have $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a quotient.” The proof uses graph theory, and offers, as a byproduct, that in this case, every element is the sum of at most three units.

This is a joint work S. Yassemi and M. R. Pournaki.

References

Department of Mathematics Section, Shahid Rajaee Teacher Training University, Tehran, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
maimani@ipm.ir
Idempotents of complete semigroups of binary relations defined by semilattices of the class $\Sigma_7(X, 6)$

Sh. Makharadze

This is joint work with N. Rokva.

Let X be an arbitrary nonempty set, D be an X-semilattice of unions, i.e., a nonempty set of subsets of the set X which is closed with respect to operations of the set-theoretic union of elements from D, f be an arbitrary mapping of the set X in the set D. To every such mapping f we put into correspondence such a binary relation α_f on the set X that satisfies the condition

$$\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x)).$$

The set of all such α_f ($f : X \to D$) is denoted by $B_X(D)$. It can be easily proved that $B_X(D)$ is a semigroup with respect to the operation of multiplication which is called a complete semigroup of binary relations defined by the X-semilattice of unions D [1].

Let $\Sigma_7(X, 6)$ be a class of all X-semilattices of unions whose every element is isomorphic to an X-semilattice of unions $D = \{Z_5, Z_4, Z_3, Z_2, Z_1, \bar{D}\}$ which satisfies the following conditions:

$$Z_4 \subset Z_3 \subset Z_1 \subset \bar{D}, \quad Z_4 \subset Z_3 \subset Z_2 \subset \bar{D}, \quad Z_5 \subset Z_3 \subset Z_1 \subset \bar{D},$$

$$Z_5 \subset Z_3 \subset Z_2 \subset \bar{D}, \quad Z_1 \setminus Z_2 \neq \emptyset, \quad Z_2 \setminus Z_1 \neq \emptyset, \quad Z_4 \setminus Z_5 \neq \emptyset,$$

$$Z_5 \setminus Z_4 \neq \emptyset, \quad Z_4 \cup Z_5 = Z_3, \quad Z_1 \cup Z_2 = \bar{D}. \quad (\ddagger)$$

The diagram of a semilattice satisfying the conditions (\ddagger) is shown in the figure.

In the paper we study the class of semigroups, which consists of all such semigroups $B_X(D)$ which are defined by some semilattice D belonging to the class $\Sigma_7(X, 6)$. The construction of idempotents and maximal subgroups is described for semigroups of the considered class [2, 3]. Formulas are found for calculating the number of idempotents for a finite set X.

References

Batumi State University, 35, Ninoshvili St., Batumi 6010, Georgia

shota_59@mail.ru; axiomabat@rambler.ru
Gluing and non-decreasing Hilbert functions
Pınar Mete

In this talk, by using the technique of gluing semigroups, we give infinitely many families of 1-dimensional local rings with non-decreasing Hilbert functions generalizing the results in [1]. More significantly, these are local rings whose associated graded rings are not necessarily Cohen-Macaulay. In this sense, we give an effective technique to construct large families of 1-dimensional Gorenstein local rings associated to monomial curves, which support Rossi’s conjecture saying that every Gorenstein local ring has non-decreasing Hilbert function.

This is a joint work with Feza Arslan of METU and Mesut Şahin of Atılım University [2].

References

Balıkesir University
pinarm@balikesir.edu.tr
w3.balikesir.edu.tr/~pinarm/

On extensions of a valuation on K to $K(x)$
Figen Öke

Let v be a valuation of a field K, G_v its value group and k_v its residue field and w be an extension of v to $K(x)$. w is called an residual transcendental extension of v if k_w/k_v is a transcendental extension and w is called residual algebraic extension of v if k_w/k_v is an algebraic extension. In this study residual transcendental and residual algebraic extensions of v to $K(x)$ are represented.

References

Trakya University Department of Mathematics, 22030 Edirne, Turkey
figenoke@gmail.com
4-Manifolds
Mehmetcik Pamuk

Let \(M \) be a topological 4-manifold whose fundamental group is either a free group or a surface group. In this talk we will give a classification of such 4-manifolds up to \(s \)-cobordism by studying the group of homotopy classes of homotopy self-equivalences.

References

Koç University
mpamuk@ku.edu.tr

Equivariant CW-complexes and the orbit category
Semra Pamuk

This is a joint work with Ian Hambleton and Ergün Yalçın. I will give a general framework for studying \(G \)-CW complexes via the orbit category. As an application we show that the symmetric group \(G = S_5 \) admits a finite \(G \)-CW complex \(X \) homotopy equivalent to a sphere, with cyclic isotropy subgroups.

References

Koç University
spamuk@ku.edu.tr
Quadric-line arrangements and ball quotients

Celal Cem Sarıoğlu

In this talk, we will give some new examples of orbifolds based on quadric-line arrangements on \mathbb{P}^2 uniformized by the complex 2-ball B_2, and exhibit the covering relations between them.

References

Dokuz Eylül University
celalcem.sarioglu@deu.edu.tr
kisi.deu.edu.tr/celalcem.sarioglu/
On a Diophantine equation

Gökhan Soydan

The object of this talk is to give all the solutions of the Diophantine equation

\[x^2 + 3^n \cdot 11^b = y^n, \]

in nonnegative integers \(a, b, x \geq 1, y \geq 1, k \in \mathbb{N}, n \geq 3\). The computations are done with MAGMA [3]. (This talk is based on the references [2], [1], [4], [5].)

This is joint work with Musa Demirci, İsmail Naci Cangül (Uludağ University) and Nazlı Yıldız İkikardeş (Balıkesir University).

References

Işıklar Air Force High School, TURKEY
gsoydan@uludag.edu.tr

Toric ideals of simple surface singularities

Mesut Şahin

A fundamental problem about toric ideals is to give an upper bound for the maximum degree of binomials in a Gröbner basis. Toric ideals of projectively normal toric varieties \(V\) are known to be generated by homogeneous binomials of degree at most \(n = \text{dim}V\), [1, Theorem 13.14]. But it is still an open problem in general if they have a Gröbner basis consisting of homogeneous binomials of degree at most \(n\), see [1, p.136]. A similar problem has recently studied in [2] for simplicial homogeneous toric ideals which are not necessarily normal. Among other important results, they have provided an affirmative answer to this problem in the case of \(\text{simplicial, normal}\) projective toric varieties, see [2, Corollary 3.8].

In this talk, we will present a class of toric varieties arising from simple surface singularities whose reduced Gröbner basis has interesting properties. First of all, homogeneous toric ideals of projective closures of these varieties have Gröbner bases consisting
of large number of binomials (changing with respect to n) whose degree are bounded by 4. Comparing to the given bound n, the toric ideals corresponding to rational singularities considered here have a very small and constant bound 4 giving signs of justification of their special place in the classification of singularities of surfaces. On the other hand, the initial ideals of toric ideals in the affine case are squarefree which has nice consequences indicated in [3].

This is a joint work with Pınar Mete of Bahkesir University and Gülay Kaya of Galatasaray University.

References

Atılım University
mesut@atilim.edu.tr
www.atilim.edu.tr/~mesut/

Array codes and m-spotty weights
İrfan Şiap

In this work, we introduce m-Spotty weights for array codes. In order to establish this objective, we first relate array codes with codes over the ring $R = F_q[x]/(x^s - 1)$. With respect to this identification we are able to manipulate array codes and further define a duality concept for array codes so called ϕ-duality. Finally, we also prove a MacWilliams identity with respect to this duality for m-Spotty weight enumerators.

Byte error control codes play an important role in computer memory systems that use chips with 4-bit I/O data [11]. Recently, high-density RAM chips with wide I/O data of 8, 16 and 32 bits have also found applications. These chips are quite vulnerable to multiple random error bits while being exposed to strong electromagnetic waves, radio active particles, etc. Due to these facts, in order to be able to correct multiple errors a new spotty byte error called m-spotty byte error is introduced in [13] for binary codes. Construction of codes correcting byte errors and properties of such codes are also investigated. Some of related work can be found in [5],[12],and [13].

Recently, a MacWilliams identity has been proven for m-spotty byte error codes [14]. In [11], Bachoc considered linear codes over the ring $F_p + uF_p$ (p prime) and constructed modular lattices by making use of linear codes over these rings. On the other hand, array
codes has been use in several applications for example in [6] and [10]. Burst errors of array codes are also investigated in [7] and [8]. Thus, in this paper, we introduce m-byte errors on linear codes over the ring R, relate this to array codes and establish a MacWilliams type identity for m-spotty weight enumerators.

A linear code C of length n over R is defined to be an additive submodule of the R-module R^n. The elements of C are called codewords.

The Hamming weight w of a codeword c is the number of nonzero places of the codeword c and is denoted by $w(c)$. The Hamming distance between the codewords c and v is defined by $d(c, v) = w(c - v)$.

Now, we give the definition of m-spotty weight of a codeword c.

Let $c = (c_1, c_2, \ldots, c_{nb}) \in R^{bn}$ be a codeword of length $N = bn$. The first byte of c is the first b entries denoted by $c_1 = (c_{11}, c_{12}, \ldots, c_{1b})$. Hence, the i-th byte of c will be denoted by $c_i = (c_{i1}, c_{i2}, \ldots, c_{ib})$.

Definition. [5] An error e is called a spotty byte error or t/b-error if t or fewer bits within a b-bit byte are in error, where $1 \leq t \leq b$.

Now, we extend the definition of m-spotty weights originally introduced in [13] for binary codes to codes over R.

Definition. Let e be an error vector and e_i be the i-th byte of e where $1 \leq i \leq n$. The number of t/b-errors in e, denoted by $w_M(e)$, and called m-spotty weight is defined as

$$w_M(e) = \sum_{i=1}^{n} \left\lfloor \frac{w(e_i)}{t} \right\rfloor.$$

If $t = 1$, then $w_M(e) = w(e)$. Hence, the m-spotty weight coincides with the usual Hamming weight.

In a similar way, we define the m-spotty distance of two codewords c and v as $d_M(c, v) = \sum_{i=1}^{n} \left\lfloor \frac{d(c_i, v_i)}{t} \right\rfloor$. Further, it is also straightforward to show that this distance is a metric in R^N.

Array Codes Obtained From Codes over the Ring R and Duality

Let C be an array code such that $C \subset M_{n \times s}(F_q)$ and let $c = (c_{ij}) \in C$. We define a map

$$\varphi: R^s \rightarrow C: (c_{11} + c_{21}x + \cdots + c_{n1}x^{n-1}, \ldots, c_{1s} + c_{2s}x + \cdots + c_{ns}x^{n-1}) \mapsto (c_{ij}).$$

It is clear that the map φ is an F_q-vector isomorphism. We are going to let the codes over R to be an R modules in order to have a richer structure. Further, if C is a linear code over R, then its image $\varphi(C)$ is an F_q-subspace of array codes. Also, m-spotty errors correspond to burst errors in the image. So, burst errors for array codes defined in [7] and [8] are also covered in this case.

Let $c = (c_1, c_2, \ldots, c_n)$ and $v = (v_1, v_2, \ldots, v_n)$ be two elements of R^n. An inner product of the elements c and v is defined by $\langle c, v \rangle = \sum_{i=1}^{n} c_i v_i$.

Let C be a linear code. The set $C^\perp = \{ v \in \mathbb{R}^n | \langle c, v \rangle = 0 \text{ for all } c \in C \}$ is also a linear code and it is called the dual code of C.

The m-spotty weight enumerator of a linear code C is defined by

$$A(z) = \sum_{c \in C} z^{\lceil w_M(c) \rceil}.$$

Since $\sum_{j=0}^b \lceil j/t \rceil \cdot \alpha_j$ gives the m-spotty weight of a codeword, we have

$$A(z) = \sum_{\alpha_0, \alpha_1, \ldots, \alpha_b \geq 0} A_{\overline{\alpha}} \prod_{j=0}^b \left(z^{\lceil j/t \rceil} \right)^{\alpha_j}$$

where $\overline{\alpha} = (\alpha_0, \alpha_1, \ldots, \alpha_b)$ denotes the distribution of bitwise Hamming weights of a codeword where α_i counts the number of bits that have weights equal to i and $A_{\overline{\alpha}}$ gives the number of codewords of weight distribution $\overline{\alpha}$.

We conclude the paper by establishing a MacWilliams Identity between array codes and their so called φ-duals.

Acknowledgment: This research is supported by Adiyaman University Research Support Unit, Project Number EFBAP2008-3.

References

Type B plactic relations for r-domino tableaux
Müge Taşkın

The recent work of Bonnafé et al. (2007) shows through two conjectures that r-domino tableaux have an important role in Kazhdan-Lusztig theory of type B with unequal parameters. In this paper we provide plactic relations on signed permutations which determine whether given two signed permutations have the same insertion r-domino tableaux in Garfinkle’s algorithm (1990). Moreover, we show that a particular extension of these relations can describe Garfinkle’s equivalence relation on r-domino tableaux which is given through the notion of open cycles. With these results we enunciate the conjectures of Bonnafé et al. and provide necessary tool for their proofs.

References
Throughout this talk, R is a commutative Noetherian ring and I, J are ideals of R. The generalized local cohomology module with respect to a pair of ideals I, J of R is introduced by Takahashi–Yoshino [1]. Let t be a non–negative integer. Let M be an R–module such that $\text{Ext}_R^t(R/I, M)$ is a finite R–module. If t is the first integer such that the local cohomology module with respect to (I, J) is non–(I, J) cofinite, then we show that $\text{Hom}_R(R/I, H_{I,J}^t(M))$ is finite. Also we study the finiteness of $\text{Ext}_R^1(R/I, H_{I,J}^t(M))$ and $\text{Ext}_R^2(R/I, H_{I,J}^t(M))$.

References

Islamic Azad University Science and Research Branch
tehranian1340@yahoo.com
The automorphism group of an infinitely generated free nilpotent group is complete

Vladimir Tolstykh

Baumslag conjectured in the 1970s that the automorphism tower of a finitely generated free nilpotent group must be very short. Let \(F_{n,c} \) denote a free nilpotent group of finite rank \(n \geq 2 \) and of nilpotency class \(c \geq 2 \). In 1976 Dyer and Formanek [1] proved that the automorphism group of \(F_{n,2} \) is even complete (and hence the height of the automorphism tower of \(F_{n,2} \) is two) provided that \(n \neq 3 \); in the case when \(n = 3 \), the height of the automorphism tower of \(F_{n,2} \) is three. The main result of [2] states that the automorphism group of any infinitely generated free nilpotent of class two is complete. In his Ph. D. thesis [3] Kassabov found an upper bound \(u(n,c) \) (a natural number) for the height of the automorphism tower of \(F_{n,c} \) in terms of \(n \) and \(c \), thereby finally proving Baumslag’s conjecture. By analyzing the function \(u(n,c) \), one can conclude that if \(c \) is small compared to \(n \), then the height of the automorphism tower of \(F_{n,c} \) is at most three.

In our talk we shall present the sketch of the proof of the following result.

Theorem. The automorphism group of any infinitely generated free nilpotent group is complete.

Thus the automorphism tower of any free nilpotent group terminates after finitely many steps.

References

Yeditepe University (Istanbul)

vtolstykh@yeditepe.edu.tr
Indecomposable cycles (on product of varieties)

İnan Utku Türkmen

For any complex algebraic variety X, singular cohomology is not sensitive enough to study this object algebraically hence one needs a more algebraic homology theory namely, the Chow homology $CH^\bullet(X)$, which is a ring built from subvarieties of X and intersection theory. However it is difficult to compute these groups, so one has to look at maps from $CH^r(X)$ to more computable (co)homology theories. such maps are called regulators.

One of the major development in study of regulators is Grothendieck’s invention of algebraic K theory, $K_0(X)$. This object is related with X in terms of vector bundles on X and Grothendieck’s Reimann-Roch theorem, given above, provides a new way to interpret these two objects, $K_0(X)$ and $CH^r(X)$:

$$K_0(X) \otimes \mathbb{Q} \cong CH^\bullet(X) \otimes \mathbb{Q}$$

After Quillen’s generalization of Grothendieck’s construction to higher K groups ($K_m(X)$), the missing analog on the cycles side is completed by Spencer Bloch’s invention of higher Chow groups($CH^r(X, m)$). Bloch’s version of Reimann-Roch theorem;

$$K_m(X) \otimes \mathbb{Q} \cong CH^r(X, m) \otimes \mathbb{Q}$$

completed the full generalization of Grothendieck’s Reimann-Roch theorem.

Independently from each other, Bloch using his higher Chow groups ($CH^r(X, m)$), and Beilinson using higher K groups ($K_m(X)$, constructed regulator maps;

$$CH^r(X, m) \rightarrow H^{2r-m}(X, r)$$

to a reasonable, computable cohomology theory $H^{2r-m}(X, r)$

In this talk I will present the some of the fundamental concepts and techniques to study higher Chow groups via regulator maps to Delign cohomology. I will mention some results about the some properties of the group $CH^r(X, m)$ in the case X is a product of elliptic curves, which are joint work with Prof. James Lewis form University of Alberta, Canada.

References

Bilkent University, Math Department, Bilkent 06800, Ankara, Turkey
turkmen@fen.bilkent.edu.tr
Flag-transitive subgroups of the linear group over a skew field

Sergey Zyubin

Let K be a (commutative or skew) field and $PG(n, K)$ be a projective space over K. The projective linear group $PGL_{n+1}(K)$ naturally acts on $PG(n, K)$. Under this action, the classical group $PSO_{n+1}(\mathbb{R})$ over the real field \mathbb{R} acts transitively on the projective space $PG(n, \mathbb{R})$. Moreover it acts flag-transitively, i.e. it moves a maximal flag of the projective space to any other one. Another example of a flag-transitive subgroup of the projective linear group is the subgroup $PSL_n(\mathbb{Z})$ of the group $PGL_n(\mathbb{Q})$. P. Neumann and Ch. Praeger posed a problem [1, Problem 11.70] to describe all flag-transitive subgroups of the projective linear group over an infinite (commutative or skew) field K. They also asked what conditions for a subring R from K provides flag-transitivity of the subgroup $PGL_{n+1}(R)$? The first result gives a required criterion for subrings.

Theorem 1. Let R be a subring of a (commutative or skew) field K. Then the subgroup $PGL_{n+1}(R)$ acts flag-transitively on the projective space $PG(n, K)$ if and only if R is a (left and right) Bezout ring and its sets of left and right fractions coincide with K.

The second result provides advance in the posed problem for linear groups of dimension 2 over locally finite fields.

Theorem 2. Let K be a locally finite field and G be a subgroup of $PGL_2(K)$. If G acts transitively on the projective line $P(1, K)$ then the only following cases are possible:

(i) $G = PGL_2(K)$;
(ii) $G = PSL_2(K)$;
(iii) G is a maximal subgroup of $PGL_2(K)$ that conjugated over quadratic extension of K to the monomial subgroup;
(iv) G has index 2 in the subgroup from the previous case.

This research is supported by the Russian Foundation for Basic Research

References

Tomsk Polytechnic University
sergey.zyubin@gmail.com
3 Posters

Soft sets and soft rings

Ummahan Acar, Fatih Koyuncu, and Bekir Tanay

Molodtsov introduced the concept of soft sets in [7]. Then, Maji et al. defined the some operations on soft sets [6]. Aktaş and Çağman defined the notion of soft groups [1]. Finally, soft semirings are defined by Feng et al. in [2]. In this paper, we have introduced the initial concepts of soft rings.

References

Muğla University, Department of Mathematics

{uacar,fatih, btanay}@mu.edu.tr
A note on ideals of IFP near-rings
Akın Osman Atagün, Emin Aygün, and Aslıhan Sezgin

A near-ring N is said to fulfill the insertion-of-factors property (IFP) provided that for all $a, b, n \in N$, $ab = 0$ implies $anb = 0$. Let N be a near-ring. If $P \triangleleft N$ and N/P is an IFP near-ring, then P is called an IFP-ideal of N. It is well-known that if N is an IFP near-ring, then for all $x \in N$, $(0 : x)$ (the annihilator of x) is an ideal of N. We know that in general, the union of subgroups is not a subgroup, and therefore the union of ideals is not an ideal, too.

In this study, we have given a condition on an IFP near-ring and then we have obtained that arbitrary unions of annihilators of elements in IFP near-rings are ideals, furthermore IFP-ideals of N.

In [2], Atagün, Sezgin and Taşdemir introduced a new type of N-group, called IFP-type o N-group. In this note, we have also characterized IFP ideals of near-rings with identity by making use of IFP-type o N-group. This is illustrated by an example.

References

Bozok University
{aosman.atagun,aslihan.sezgin}@bozok.edu.tr, eminaygun@erciyes.edu.tr

Exact A-exponential groups
M. Amaglobeli and T. Bokelavadze

The notion of an A-exponential G for an associative ring A with unit was introduced by R. Lyndon in [1]. In [2] A. G. Myasnikov gave a more exact definition of an exponential group due to Lyndon by introducing one more additional axiom by which all abelian subgroups of an exponential group G are usual A-modules. In [2] the category of A-exponential groups is introduced in more exact terms and the fundamental principles of the theory of such groups. The systematic exposition is given in [2]–[5].
Let for a ring A and a group G the notion of exponent g^α be uniquely defined for all $g \in G, \alpha \in A$. Then G is called an A-exponent group if

1. $g^1 = g, g^0 = 1, 1^\alpha = 1$;
2. $g^{\alpha+\beta} = g^\alpha \cdot g^\beta, g^{\alpha\beta} = (g^\alpha)^\beta$;
3. $(h^{-1}gh)^\alpha = h^{-1}g^\alpha h$;
4. $[g, h] = 1 \implies (gh)^\alpha = g^\alpha h^\alpha$.

The notion of partial A-exponential group is defined in a natural manner. Let P_A be the category of all such groups. The key operation in the category of A-groups is the notion of tensor completion G^A for any partial A-group G [2]. A group G is called exact with respect to a ring A if the canonical mapping $\lambda: G \to G^A$ is an embedding. Let us define the class $P^0_A \subseteq P_A$. $G \in P^0_A$ if the following conditions are fulfilled:

1) if M is maximal abelian semigroup $G, x \notin M$, then $M^x \cap M = 1$;
2) a canonical mapping $i: M \bigotimes_A A$ in the category of partial A-modules is an embedding. The following theorem is proved.

Theorem. Let \mathbb{Z} be a subring of the ring A and the group $G \in P^0_A$. In G and A there no elements of order 2. Then the group G is exact, i.e., the canonical mapping $\lambda: G \to G^A$ is an embedding.

References

Iv. Javakhishuli Tbilisi State University, 2, University St., Tbilisi 0143, Georgia
A. Tsereteli Kutaisi State University, 59, Tamar Mepe St., Kutaisi 4600, Georgia
bokel71@yahoo.com
Cobordism group of \((B\mathbb{Z}/p, f)\) manifolds
Mehmet Akif Erdal

Let \(\chi_n : \mathbb{Z}/p \to U(n)\) be a certain \(n\)-dimensional faithful complex representation of \(\mathbb{Z}/p\) and \(i_n : U(n) \to O(2n)\) be inclusion for \(n \geq 1\). Then the compositions \(i_n \circ \chi_n\) and \(j_n \circ i_n \circ \chi_n\) induce fibrations on \(B\mathbb{Z}/p\) where \(j_n : O(2n) \to O(2n + 1)\) is the usual inclusion. Let \((B\mathbb{Z}/p, f)\) be a sequence of fibrations where \(f_{2n} : B\mathbb{Z}/p \to BO(2n)\) is the composition \(Bj_n \circ Bi_n \circ B\chi_n\) and \(f_{2n+1} : B\mathbb{Z}/p \to BO(2n + 1)\) is the composition \(Bj_n \circ Bi_n \circ B\chi_n\). By Pontrjagin-Thom theorem the cobordism group \(\Omega_m(B\mathbb{Z}/p, f)\) of \(m\)-dimensional \((B\mathbb{Z}/p, f)\) manifolds is isomorphic to \(\Pi^s_\infty(M\mathbb{Z}/p, *)\) where \(M\mathbb{Z}/p\) denotes the Thom space of the bundle over \(B\mathbb{Z}/p\) that pullbacks to the normal bundle of manifolds in \(\Omega_m(B\mathbb{Z}/p, f)\). We will use the Adams Spectral Sequence to get information about \(\Omega_m(B\mathbb{Z}/p, f)\).

References

Bilkent University
akiferdal@gmail.com

Obtaining 3-manifolds by using framed links
Deniz Kutluay

Let \(L\) be a framed link whose all components are trivial. Linking numbers of these components will be specified a priori. We shall then follow the general argument of obtaining 3-manifolds by surgery on \(S^3\) in [1] to get an orientable 3-manifold by using \(L\).

References

Bilkent University
kutluay@fen.bilkent.edu.tr
Monomial Burnside ring as a biset functor

Cihan Okay

Given a finite group G, we can realize the permutation modules by the linearization map defined from the Burnside ring $B(G)$ to the character ring of G, denoted $A_K(G)$. But not all KG-modules are permutation modules. To realize all the KG-modules we need to replace $B(G)$ by the monomial Burnside ring $B(C,G)$. We can get information about monomial Burnside ring of G by considering subgroups or quotient groups of G. For this the setting of biset functors is suitable. We can consider the monomial Burnside ring as a biset functor and study the elemental maps: induction, restriction, inflation, deflation and isogation. Among these maps, deflation is somewhat difficult and requires more consideration.

Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
okay@fen.bilkent.edu.tr

Real monomial Lefschetz invariants
for spheres of real representations

İpek Tuvay

Let X be a finite G-set, consider the permutation $\mathbb{R}G$-module $M = \mathbb{R}X$ and $S(M)$ be the unit sphere of M. The reduced Lefschetz invariant for X, which is an element of the Burnside ring $B(G)$, is defined to be

$$\tilde{\Lambda}_G(S(M)) = - \bigoplus_{n=-1}^{\infty} (-1)^n [C_n]$$

where C_n is the set of n-simplices of the triangulation of $S(M)$. We discuss a theorem which gives the Lefschetz invariant in terms of the idempotent basis of $Q B(G)$. This has a connection with the reduced Euler characteristic of the n-sphere S^n. Then we generalize the reduced Lefschetz invariant to monomial Burnside rings and with the help of this we decompose the tom Dieck map die into a product of two maps.

References

Bilkent University
ipek@fen.bilkent.edu.tr
Free group actions on manifolds

Özgün Ünlü

Given a compact highly connected manifold M without boundary, one could ask what group theoretic conditions characterize the finite groups that can be realized as the fundamental group of a manifold whose universal cover is M. In case $M = S^3$ the answer is known. William Thurston’s elliptization conjecture, proved by Grigori Perelman, states that only finite subgroups of $SO(4)$, listed in [6], can be realized as the fundamental group of a manifold whose universal cover is S^3. Considering the fundamental group of a manifold with universal cover M as the group of deck transformations acting freely on M, the above problem is equivalent to asking what group theoretic conditions characterize the finite groups which can act freely on M. The study of this problem breaks up into two distinct aspects: (1) finding group theoretic restrictions on finite groups that can act freely on M; and (2) constructing explicit free actions of finite groups on M. In the case when M is a sphere, the problem is called the topological space form problem and both aspects of this problem have been well studied (see [5]). As a natural continuation, one could study the case when M is a product of two equidimensional spheres. In this case we know some restrictions for example the group cannot contain a copy of the elementary abelian group $\mathbb{Z}/p \times \mathbb{Z}/p \times \mathbb{Z}/p$ (see [1]) and cannot contain a copy of the alternating group A_4 (see [7]). As for the second aspect of this problem we have some new methods which have been recently employed in constructing free actions on products of two equidimensional spheres (see [2], [3], and [4]). For example we can construct a free action of the extraspecial 3-group of order 27 and exponent 3 on $S^5 \times S^5$.

References

Bilkent University

unluo@fen.bilkent.edu.tr
www.fen.bilkent.edu.tr/~unluo/
4 Personnel

Meeting coordinator Sinan Sertöz (Bilkent)

Scientific committee Mahmut Kuzucuoğlu (METU), James D. Lewis* (Alberta), Ali Nesin (Bilgi), Tony Scholl* (Cambridge), Sinan Sertöz (Bilkent), Simon Thomas* (Rutgers), Alev Topuzoğlu (Sabancı) (* Honorary members)

Organizing committee David Pierce (METU), Sinan Sertöz (Bilkent), Müfit Sezer (Bilkent), Özgün Ünlü (Bilkent), Ergün Yalçın (Bilkent)

Booklet editor David Pierce (METU)

5 Acknowledgements

Hospitality Tivrona Tours

Venue Antalya Oteli, Lara Yolu, Antalya

Financial support TÜBİTAK (the Scientific and Technological Research Council of Turkey), the Turkish Mathematical Association, Istanbul Bilgi University

Website http://arf.math.metu.edu.tr/~antalya/
6 Participants

1. M.H. Abbaspour
 mh_abbaspour@yahoo.com
2. Ümmühan Acar
 uacar@mu.edu.tr
3. Alejandro Adem
 adem@math.ubc.edu
4. Evrim Akalan
 eakalan@hacettepe.edu.tr
5. Kurşat Aker
 aker@gursey.gov.tr
6. Fatma Altunbulak
 fatma@fen.bilkent.edu.tr
7. Murat Altunbulak
 murat.altunbulak@gmail.com
8. Ahmet Arikan
 arikan@gazi.edu.tr
9. Aynur Arikan
 yalincak@gazi.edu.tr
10. Sefa Feza Arslan
 sarslan@metu.edu.tr
11. Akin Osman Atagüin
 aosman.atagun@bozok.edu.tr
12. Sevgi Atlıhan
 asevgi@gazi.edu.tr
13. Luchezar Avramov
 avramov@math.unl.edu
14. Ela Aydınlı
 eaydin@cu.edu.tr
15. Lawrence Barker
 barker@fen.bilkent.edu.tr
16. Oleg Belogradek
 obolegradek@rambler.ru
17. Ayşe Berkman
 aberkman@metu.edu.tr
18. Cansu Betin
 cbetin@atilim.edu.tr
19. Özlem Beyarslan
 ozlem.beyarslan@boun.edu.tr
20. Tevfik Bilgin
 tbilgin@fatih.edu.tr
21. Mehpare Bilhan
 mehpere@metu.edu.tr
22. Tengo Bokelavadze
 bokel71@yahoo.com
23. Robert Boltje
 boltje@math.ucsc.edu
24. Alexandre Borovik
 borovik@manchester.ac.uk
25. Arzu Boysal
 arzu.boysal@boun.edu.tr
26. Jeffrey Burdges
 Jeffrey.Burdges@manchester.ac.uk
27. Vural Cam
 cvural@metu.edu.tr
28. Naci Cangül
 cangul@uludag.edu.tr
29. Jon Carlson
 jfc@math.uga.edu
30. İzzet Coşkun
 coskun@math.uic.edu
31. Olcay Coşkun
 olcay.coskun@boun.edu.tr
32. Emrah Çakçak
 cakcak@metu.edu.tr
33. Şermin Çam
 sermincam@student.bilgi.edu.tr
34. Fatih Çelik
 fatihcelik@student.bilgi.edu.tr
35. Münevver Çelik
 mucelik@metu.edu.tr
36. Türkü Özüm Çelik ozlum@student.bilgi.edu.tr
37. Yasemin Çengellenmiş ycengellenmis@yahoo.com
38. Büşra Çınar buffly_2@hotmail.com
39. Derya Çıray dcguven@student.bilgi.edu.tr
40. Alex Degtyarev degt@fen.bilkent.edu.tr
41. Ömür Deveci odevci36@yahoo.com.tr
42. Ya Diasamidze dihasamidze_ya@mail.ru
43. Uğur Doğan u_dogan@student.bilgi.edu.tr
44. Matyas Domokos domokos@renyi.hu
45. Emilie Dufresne emilie.dufresne@iwr.uni-heidelberg.de
46. Papatya Duman pduman@student.bilgi.edu.tr
47. Sevim Durak sdurak@cumhuriyet.edu.tr
48. Uğur Efem uefem@student.bilgi.edu.tr
49. Esra Eğici eegici@student.bilgi.edu.tr
50. Naime Ekici nekici@cu.edu.tr
51. Mehmet Akif Erdal merdal@fen.bilkent.edu.tr
52. Ceyhun Erdel ceyhunerdel@student.bilgi.edu.tr
53. Deniz Erdemirci denizerdemirci@hotmail.com
54. Vahap Erdoğdu erdogdu@itu.edu.tr
55. Soner Erkuş mensa.35@hotmail.com
56. Berna Erş bernaers@student.bilgi.edu.tr
57. Kıvanç Ersoy kersoy@math.metu.edu.tr
58. Zerrin Esmerligil ezerrin@cu.edu.tr
59. Ghodrat Ghafarzadeh gh.ghafarzadeh@urmia.ac.ir
60. Haydar Göral hgorall@student.bilgi.edu.tr
61. David J Green david.green@uni-jena.de
62. Ash Güçlükan guclukan@fen.bilkent.edu.tr
63. Doğa Güçtenkorkmaz doga@student.bilgi.edu.tr
64. Burçin Güneş burcingunes@student.bilgi.edu.tr
65. Sema Günşürkün gsema@metu.edu.tr
66. Sercan Gür sercang@student.bilgi.edu.tr
67. Murat Güzeltepe mguzeltepe@sakarya.edu.tr
68. Sevgi Harman harman@itu.edu.tr
69. Jeremy Jacobson jjaco19@lists.math.lsu.edu
70. Eric Jaligot jaligot@math.univ-lyon1.fr
71. Rob de Jeu r.de.jeu@few.vu.nl
72. Mustafa Kalafat kalafat@math.wisc.edu
73. Müge Kanuni
 muge.kanuni@boun.edu.tr
74. Semra Kaptanoğlu
 sozkap@metu.edu.tr
75. İbrahim Karahan
 ibrahim_karaham@hotmail.com
76. Mehmet İnan Karakuş
 minankarakus@gmail.com
77. Tariel Kemoklidze
 kemoklidze@gmail.com
78. Melek Kılıç
 melek_kl@yahoo.com
79. Zekeriya Kılıçdere
 zekeriyakilicdere@hotmail.com
80. Emine Koç
 eminekoc@cumhuriyet.edu.tr
81. Dilber Koçak
 e137366@metu.edu.tr
82. Fatih Koyuncu
 fatih@mu.edu.tr
83. Deniz Kutluay
 kutluay@fen.bilkent.edu.tr
84. Martin Kreuzer
 kreuzer@fim.uni-passau.de
85. Mahmut Kuzucuoğlu
 matmah@metu.edu.tr
86. V. Levchuk
 levchuk@lan.krasu.ru
87. James Lewis
 lewisjd@ualberta.ca
88. Uğur Madran
 ugur.madran@ieu.edu.tr
89. Nazan Mahsereci
 nmahsereci@bilgi.edu.tr
90. Hamid Reza Maimani
 maimani@mail.ipm.ir
91. Shota Makharadze
 axiomabat@rambler.ru
92. Engin Mermut
 engin.mermut@deu.edu.tr
93. Tugba Mert
 tmert@cumhuriyet.edu.tr
94. Pınar Mete
 pinarm@balikesir.edu.tr
95. Ahmet Nedim Narman
 annarman@bilgi.edu.tr
96. Azadeh Neman
 azadeh@math.univ-lyon1.fr
97. Ali Derya Nesin
 adnesin@student.bilgi.edu.tr
98. Hüseyin Ali Nesin
 anesin@bilgi.edu.tr
99. Keith Nicholson
 wknichol@math.ucalgary.ca
100. Sinem Odabaşı
 sinem.odabasi@hotmail.com
101. Cihan Okay
 okay@fen.bilkent.edu.tr
102. Neslihan Os
 neslihanos@yahoo.com
103. Figen Öke
 figenoke@gmail.com
104. Ayşe Çiğdem Özcan
 ozcan@hacettepe.edu.tr
105. Salahattin Özdemir
 salahattin.ozdemir@deu.edu.tr
106. Şafak Özen
 bildiginessek@gmail.com
107. Mehmet Özen
 ozen@sakarya.edu.tr
108. Mustafa Özkan
 mustafa1422@mynet.com
109. Rukiye Öztürk
 rukiye0471@gmail.com
110. Mehmetçik Pamuk
mpamuk@ku.edu.tr
111. Semra Pamuk
spamuk@ku.edu.tr
112. David Pierce
dpierce@metu.edu.tr
113. Celal Cem Sarıoğlu
cealcem@gmail.com
114. A. J. Scholl
a.j.scholl@dpmms.cam.ac.uk
115. Ali Sinan Sertöz
sertoz@bilkent.edu.tr
116. Müfit Sezer
sezer@fen.bilkent.edu.tr
117. Sezgin Sezer
sezgin@cankaya.edu.tr
118. Ashihan Sezgin
sezgin.nearring@hotmail.com
119. Ichira Shimada
shimada@math.sci.hiroshima-u.ac.jp
120. Gökhan Soyardan
gsoydan@uludag.edu.tr
121. Peter Symonds
peter.symonds@manchestre.ac.uk
122. Mesut Şahin
mesutsahin@gmail.com
123. Nil Şahin
nilsahin16@hotmail.com
124. Çagri Şeker
callsugar@hotmail.com
125. İrfan Şiap
isiap@adiyaman.edu.tr
126. Vedat Şiap
vedatsiap@gmail.com
127. Bekir Tanay
btanay@mu.edu.tr
128. Sait Taş
s.t.25@hotmail.com
129. Muge Taşkın
muge.taskin@boun.edu.tr
130. Dilek Tefenlili
kdtefenlili9@student.bilgi.edu.tr
131. Abolfazl Tehranian
tehranian1340@yahoo.com
132. Ahmet Temizyürek
tahmet@cu.edu.tr
133. Vladimir Tolstykh
tvlaa@rambler.ru
134. İpek Tuşay
ipek@fen.bilkent.edu.tr
135. İnan Utku Türkmen
turkmen@fen.bilkent.edu.tr
136. Muhammed Uludağ
muludag@gsu.edu.tr
137. Özgün Ünlü
ounlu@fen.bilkent.edu.tr
138. Yusuf Ünlü
yusuf@cu.edu.tr
139. Sinan Ünver
sunver@ku.edu.tr
140. Ergün Yalçın
yalcine@fen.bilkent.edu.tr
141. Firat Yaşar
fyasar@student.bilgi.edu.tr
142. Volkan Dağhan Yayhoğlu
vdaghan@gmail.com
143. Hasret Yazarlı
hyazarli@cumhuriyet.edu.tr
144. Sergey Zyubin
sergey.zyubin@gmail.com
Notes on Turkish

In alphabetical order, the 29 letters of the Turkish alphabet are:

A B C Ç D E F G Ğ H İ I J K L M N O Ö P R S Ş T U Ü V Y Z
a b c ç d e f g ğ h i i j k l m n o ö p r s ş t u ü v y z

Words are spelled as they are spoken. Except in loanwords and as noted just below, there is no variation between long and short vowels. There is hardly any variation between stressed and unstressed syllables.

The consonants that need mention are: c, pronounced like English j; ç, like English ch; ğ, which lengthens the vowel that precedes it (and never begins a word); j, as in French; and ş, like English sh. Doubled consonants are held longer.

As for the vowels, the a is like uh in English; ö and ü are as in German, or are like the French eu and u; and u is like the short English oð. Diphthongs are obtained by addition of y: so, ay is English long i, and ey is English long a.

The eight vowels exhibit three binary distinctions: back/front, unround/round, and close/open. In use, many words feature a stem followed by one or more suffixes. Often the vowel in a suffix harmonizes with preceding vowel: then it resembles the preceding vowel as far as possible while remaining hard, or while remaining unround open. So one might introduce special symbols for the variable vowels in suffixes, as suggested in the table.

The question Avrupalılaştıramadıklarımızdan mısınız? can be analyzed as a stem with 11 suffixes:

Avrupa0li1la2š3tir4am₅d₆lar₇imiz₈dan₉mi₁₀siniz₁₁?

The suffixes translate mostly as separate words in English, in almost the reverse order: Are you¹¹ one-of⁹ those⁷ whom⁶ we⁵ could-not⁴ Europeanize (make⁴ be²come³ Europe⁰an¹)?¹⁰ If we change Europeanize to Turkify, we get Türklestiremediklерimizden misiniz? Detached, the suffixes might be written l@ş, t#r, @m@, d#k, l@r, #m#z, d@n, m#, s#n#z.

Useful expressions

Lütfen / Teşekkürler / Bir şey değil Please / Thanks / It’s nothing.
Evet/hayır Yes/no. Var/yok There is / there isn’t. Affedersiniz Excuse me.
Efendim Madam or Sir.* Merhaba Hello. Günaydın Good morning.
Hoş geldiniz / Hoş bulduk Welcome / (its response).
İyi günler/akşamlar/geceler Good day/evening/night.

*Efendi is from the Greek αὐθέντης, whence also English authentic.
Güle güle Fare well (said to the person leaving);
Allaha ısmarladık or Hoşça kalın Good bye (said to the person staying behind).
Bay/Bayan Mr./Ms., or gentlemen’s/ladies’. Beyefendi/Hanimefendi Sir/Madam.

İtiniz/çekiniz Push/pull; giriş/çıkış entrance/exit;
sol/sağ left/right; soğuk/sıcak cold/hot.

Nasılsınız? / İyiyim; siz? / I’m fine; you? / I’m also fine.
Elinize sağlık Health to your hand (the chef’s, who replies: Afiyet olsun May it be healthy).
Kolay gelsin May your work come easy.
Geçmiş olsun May your sickness, difficulty, &c. be over.
İnşallah If God wills; Maşallah or Allah korusun May God protect.
Rica ederim I request, or Estağfurullah, can be used with the sense of I don’t deserve such praise! or Don’t say such [bad] things about yourself!

Sıfır, bir, iki, üç, dört, beş, altı, yedi, sekiz, dokuz 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
on, yirmi, otuz, kırk, elli, altmış, yetmiş, doksan, doksan, ..., 99;
yüz, bin, milyon, milyar 10^2, 10^3, $(10^3)^2$, $(10^3)^3$;
yüz kırk dokuz milyon beş yüz doksan yedi bin sekiz yüz yetmiş $149.597.870$.

Daha/en more/most; az less, en az least.
Al-/sat-/ver- take, buy / sell / give;
alış/satış/alışveriş buying (rate)/selling (rate)/shopping.
İn-/bin-/gir-/çık go: down, off / onto / into / out, up;
aşağı/yukarı lower/upper; alt/üst bottom/top.
Kim, ne, ne zaman, nerede, nereye, nereden, niçin, nasıl, kaç, ne kadar?
who, what, when, where, whither, whence, why, how, how many, how much?

8 Session chairs

Plenary talks

<table>
<thead>
<tr>
<th></th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>morning</td>
<td>Adem Scholl Avramov Carlson de Jeu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afternoon</td>
<td>Ünver Coşkun Berkman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parallel talks

<table>
<thead>
<tr>
<th></th>
<th>Room 1</th>
<th>Room 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wed</td>
<td>Thurs</td>
</tr>
<tr>
<td>15.20</td>
<td>M. Sezer Bilhan Y. Ünlü</td>
<td>I. Şiap Mermut Barker</td>
</tr>
<tr>
<td>16.30</td>
<td>Belegradek Cangül Özen</td>
<td>Madran Öke Ekici</td>
</tr>
<tr>
<td>17.40</td>
<td>Erdoğdu</td>
<td>Kuzucuoğlu</td>
</tr>
</tbody>
</table>
9 Timetable

For session chairs, see overleaf.

<table>
<thead>
<tr>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>Scholl</td>
<td>Adem</td>
<td>Carlson</td>
<td>Avramov</td>
</tr>
<tr>
<td>9.50</td>
<td></td>
<td></td>
<td></td>
<td>Ünver</td>
</tr>
<tr>
<td>10.00</td>
<td>Symonds</td>
<td>Green</td>
<td>de Jeu</td>
<td>Lewis</td>
</tr>
<tr>
<td>10.50</td>
<td></td>
<td></td>
<td></td>
<td>Shimada</td>
</tr>
<tr>
<td>11.20</td>
<td>İ. Coşkun</td>
<td>Uludağ</td>
<td>Boltje</td>
<td>Domokos</td>
</tr>
<tr>
<td>12.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wednesday
- **14.00** | Nicholson
- **14.50** | Kreuzer
- **15.20** | coffee
- **15.40** | Parallel sessions
- **16.20** | Coffee
- **16.30** | Parallel sessions
- **16.50** | Coffee
- **17.30** | Parallel sessions
- **17.40** | Poster session
- **18.40** | Coffee

Room 1

<table>
<thead>
<tr>
<th>Wed</th>
<th>Thurs</th>
<th>Sat</th>
<th>Wed</th>
<th>Thurs</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.20</td>
<td>Degtyarev</td>
<td>Soydan</td>
<td>Tehranian</td>
<td>Makharadze</td>
<td>Öke</td>
</tr>
<tr>
<td>15.40</td>
<td>Kalafat</td>
<td>Cangül</td>
<td>Zyubin</td>
<td>Kemoklidze</td>
<td>Atlıhan</td>
</tr>
<tr>
<td>16.00</td>
<td>M. Pamuk</td>
<td>Güzeltepe</td>
<td>Levchuk</td>
<td>Diasamidze</td>
<td>İ. Şiap</td>
</tr>
</tbody>
</table>

Room 2

<table>
<thead>
<tr>
<th>Wed</th>
<th>Thurs</th>
<th>Sat</th>
<th>Wed</th>
<th>Thurs</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.30</td>
<td>Güçlükan</td>
<td>Şahin</td>
<td>Dufresne</td>
<td>Abbaspour</td>
<td>Kaptanoğlu</td>
</tr>
<tr>
<td>16.50</td>
<td>F. Altunbulak</td>
<td>Saroğlu</td>
<td>Madran</td>
<td>Ghafarzadeh</td>
<td>Taşkın</td>
</tr>
<tr>
<td>17.10</td>
<td>Türkmen</td>
<td>Tolstykh</td>
<td>S. Pamuk</td>
<td>Maimani</td>
<td>Çengellenmiş</td>
</tr>
</tbody>
</table>

| 17.40 | Mete | 18.00 | Harman |
| 18.20 | | | |